
at XD~O.| and 

NUoo = B exp ( - -  mfo) ( 7 ) 

a t  

In contrast to the case of a symmetrically heated channel, the quantities A, B, m, and 
n depend on two temperature factors: ~s = Ts/T0 and ~w = Tw/T0- However, since the temper- 
ature factor ~w is usually small in reactors with cooled walls, its effect can be ignored. 
In fact, at T o = 293 K, a change in T w from 323 to 573 K causes Nu0D to change by 4-6% 
(curves 1 and 5 in Fig. 4). 

We therefore determine these quantities as a function only of ~s: 

A = 0.66exp(0.17~sL n = 0 .39exp(- -0 ,053~sL B = 1,3.0.1-1aA, (8) 
m = 0 . 4 5 ~ s + 1 . 4 6 .  

I n  t h e  r a n g e  1 < ~ s < 4 . 5  t h e  r e s u l t s  o f  t h e  n u m e r i c a l  s o l u t i o n  and r e s u l t s  c a l c u l a t e d  
f rom a p p r o x i m a t e  f o r m u l a s  ( 6 - 8 )  d i f f e r  by no more t h a n  5% t h r o u g h o u t  t h e  r a n g e  0,002~2~0,2  
e x c e p t  f o r  t h e  n e i g h b o r h o o d  o f  t h e  p o i n t  2D~0,1  H e r e ,  t h i s  d i f f e r e n c e  i n c r e a s e s  t o  
a b o u t  8%. 

The e f f e c t  o f  t h e r m o d i f f u s i o n  and f r e e  c o n v e c t i o n  can  be e v a l u a t e d  f rom t h e  r e l a t i o n s  
shown in  F i g s .  2 -4  and f rom Eqs .  ( 2 - 5 ) .  

A s i m i l a r  c a l c u l a t i o n  o f  h e a t  f l u x e s  in  a r e a c t o r  was p e r f o r m e d  in  [ 4 ] ,  w h i l e  t e m p e r -  
a t u r e  and c o n c e n t r a t i o n  p r o f i l e s  d e s c r i b e d  by p o l y n o m i a l s  were  p r e s e n t e d  in  [3 ,  4 ] .  
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EFFECT OF THE FORM OF THE TEMPERATURE DEPENDENCE OF 

SURFACE TENSION ON MOTION AND HEAT TRANSFER IN A 

LAYER OF LIQUID DURING LOCAL HEATING 

Yu. S. Ryazantsev, V. M. Shevtsova, 
and Yu. V. Val'tsiferov 

UDC 536.252:532.61 

The nonsteady distribution of velocity and temperature in a layer of liquid 
during thermoconvective motion caused by local heating is calculated. The 
cases of an increasing and decreasing temperature dependence of surface 
tension are examined. 

A large number of studies has been devoted to explaining the relative role of thermo- 
capillary (TC) and thermogravitational (TG) convection in the motion of a liquid in a system 
with temperature gradients. These studies have become particularly important in connection 
with investigation of the behavior of liquids under conditions of reduced gravitation [i, 2]. 

Until recently, it was usually assumed when theoretically describing thermocapillary 
motion that surface tension decreased linearly with an increase in temperature (positive 
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Fig. i. Distribution of liquid velocity u s = u~'10 3 on 
on the surface of the layer along the radius for the cases 
examined: a) Ma = 9"10 4 , Gr = 0, t = 12-10-5; b) Ma = 
-9"10 4 , Gr = 0, t = 12"10-s; c, d, and e correspond to 
simultaneous action of TC and TG convection, Ma = -9-10 4 , 
Gr = i0 v, but different moments of time: c) 2"10 -5 , d) 
4"10 -5 , e) 12"i0 -s. 

Marangoni effect) [3]. At the same time, it is known that a decreasing temperature depen- 
dence of surface tension is not universal. For certain aqueous solutions of alcohol, binary 
alloys, and liquid crystals, surface tension may have an extremum at a certain temperature 
and may both decrease and increase with an increase in temperature in different temperature 
intervals [4]. 

A change in the sign of the thermocapillary effect should lead to a substantial change 
in the character of the relationship between the thermogravitational and thermocapillary 
motion of liquids, since the directions of circulatory motion of the liquid generated by 
each of these effects become opposed to one another. 

We will study motion and heat transfer in a liquid layer caused by local heating both 
in the presence and in the absence of thermogravitational convection in the case when there 
is a change in the direction of the thermocapillary forces. 

We will examine the nonsteady development of convection inside a layer of thickness H 
of a liquid which is viscous and incompressible. The layer fills a plane cylindrical 
cuvette of radius R. At the initial moment of time, a region with elevated temperature and 
having the radius a' is created on the axis of the cuvette. It is assumed that temperature 
is distributed uniformly with respect to both height and radius in this region. The heat 
source is inactive at subsequent moments of time. 

The mathematical formulation of the problem includes the axisymmetric nonsteady 
Navier--Stokes equation written in cylindrical coordinates in the Boussinesq approximation 
[5] and the heat conduction equation. Changing over to dimensionless variables and having 
selected the curl m, stream function ~, and temperature @ as the unknown functions, we 
write the initial equations in the form: 

O~ 0o} v 8 ~  cou ( ~ aO (1 )  
0"--'7- + u Or + Oz + ~ = p r t v % )  . . . .  r , r 2 ' ) + G r p r ~ O r  ' 

dO aO O0 
- - - } - u ~ - } - v  - = V 2 0 ,  

Ot ar az 

V2 ~ 2 O~ ~or, 
r Or 

( 0 - -  

OZ Or ' 

1 Oq~ 
r @z 

1 &b 
r a r  

( 2 )  

(3) 
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Fig. 2. Dependence of the maximum ~max and minimum ~min values 
of the stream function on time: curve i corresponds to TC con- 
vection Ma > 0, Gr = 0; 2) anomalous TC convection Ma < 0, 
Gr = 0; 3 and 3') ~max and ~min with the simultaneous action 
of TC and TG convection Ma < 0, Gr ~ 0. 

Fig. 3. Temperature distribution on the surface of the layer 
in the radial direction: a) Ma > 0, Gr = 0; b) Ma < 0, Gr = 0; 
c) Ma < 0, Gr # 0; 1-3) change in @s at the times 2.10 -5 , 
6-10 -5 , 12.10-5; 0 = 0.i; 0.2. 
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Oz 2' + Or ~ + r Or 

We assign conditions of balance of the viscous and TC forces (Marangoni effect) on the 
free surface (z = h) of the liquid 

O---JL=Ma-OO, M a = - -  do R(T~--To)  (4 )  

Oz Or dT  p~• 

He r e ,  we w i l l  examine  v a l u e s  o f  do /dT which  a r e  b o t h  l e s s  t h a n  and g r e a t e r  t h a n  z e r o  
and ,  a c c o r d i n g l y ,  p o s i t i v e  and n e g a t i v e  Marangoni  numbers .  

C o n d i t i o n s  o f  a d h e s i o n  o f  t h e  l i q u i d  a r e  a s s i g n e d  on t h e  s i d e  w a l l s  ( r  = 1) and t h e  
bo t tom o f  t h e  c u v e t t e  (z  = 0) 

r  -.ar =o. (5) 
On 

The bottom, the lateral surface, and the free surface are considered to be thermally insula- 
ted 

ao/an = 0. (6) 

Symmetry conditions are assigned on the cuvette axis 

~ ( r = 0 ,  z, t ) = ~ ( r = 0 ,  z, t ) =  
O 0 ( r  = O, z, t) 

Or 
= 0 .  ( 7 )  

The liquid is stationary at the initial moment of time 

~(r,  z, t = 0 ) = ~ ( r ,  z, t = 0 ) = 0  

and the temperature distribution near the symmetry axis is given 

O(r, z, t = 0 ) =  1, O ~ r ~ a ,  O(r ,  z, t = 0 ) = 0 ,  r > a .  

(8) 

O) 

748 



We used the following dimensionless variables in the formulas: r = r'/R, z = z~/R, 
t = (~/R2)t ' ' ' 

�9 , V:(R/Z) V', U:(R/X) U, ~:(Z/R z)~, ~:~'/(• T' :T'(r, z, ~) is temperature, 

@ = (T'--To)/(TI--To), h = H/R, a-a'/R, T I is the temperature in the initial hot spot (9). 

Problem (i-9) was approximated by means of an implicit difference scheme on a nonuni- 

form grid [6]. In solving the curl equations (i), we used the boundary condition proposed 
in [7]. The steady-state Poisson equation for the stream function was solved iteratively 
on each time layer. The main results were obtained on a grid with 46 • 21 nodes. Since the 
largest temperature and velocity gradients occurred near the axis and the surface of the 
liquid filling the cylindrical vessel, the smallest radial steps were chosen near the axis 
and were equal to 0.002. The smallest steps in the height direction were chosen near the 
surface and were equal to 0.005. The time step was constant and was equal to 10 -7 The 
characteristic time of the process in the dimensionless variables was 1.5-10 -4 . 

In studying TC convection for the typical case da/dT < 0, we used data for ethyl alco- 
hol Pr = 16, ~ = 9.23.10 -~ cm=/sec, Ma = 9"104 , the dimensions of the cuvette corresponded to 

the dimensions in the experiment in [8]. In examining the case of an inverse dependence of 
surface tension on temperature, to reveal characteristic features of the phenomenon we took 
the same numerical values but the opposite sign for the Marangoni numbers. This corresponds 
to the actual values encountered, since doldT > 0 [9] for certain aqueous alcohol solutions. 

In the case of TC convection, a change in the sign of do/dT changes the direction of 
vortical motion of the liquid. In the case of a positive Marangoni number with the simul- 
taneous action of TC and TG convection, velocity increases due to the coincidence of the 
direction of circulation but the pattern seen does not change drastically in a qualitative 
sense. Of the greatest interest is the case of the simultaneous action of TC and TG convec- 
tion with a negative Marangoni number, when the direction of motion generated by TC and TG 
forces is opposite, do/dT > 0, Ma = -9"10 4 , and Gr = 10 7 . 

To study the effect of the direction of the TC forces, we will examine three cases: i) 
normal TC convection without allowance for gravitation, do/dT < 0, Ma = 9"10 4 , Gr = 0; 2) TC 
convection with an anomalous dependence of surface tension o on temperature and without 
allowance for gravitation, do/dT > 0, Ma = -9"10 4 , Gr = 0; 3) simultaneous action of TC and 
TG convection with a negative Marangoni number, do/dT > 0, Ma = -9-10 4 , Gr = 10 7 . 

The effect of the direction of surface tension on mass transfer in the liquid was fol- 
lowed from the results of calculation of the velocity of the liquid on the free surface. 
These results are shown in Fig. i. Shown below the distributions are the streamlines in the 
cross section of the cuvette for the same moments of time as were used for velocity. Figure 
la corresponds to TC convection in the case of a positive Marangoni number and the moment of 
time t = 12"i0 -s, which is close to the completion of heat and mass transfer. Figure ib 
shows TC convection with a negative Ma number and the same moment of time. 

It is evident from a comparison of Fig. la and Fig. ib that a change in the sign of 
do/dT changes the direction of vortical motion of the liquid. Meanwhile, velocity is greater 
in the case do/dT < 0 (Fig. la). This is evidently connected with the fact that in the case 
do/dT, thermocapillary forces cause the liquid to flow from the cold region to the heated 
region, overcoming additional resistance. In the case do/dT < 0 (Fig. ib), the liquid flows 

in the opposite direction. 

Figure ic-e shows the distribution of velocity on the surface and the streamlines for 
simultaneous TC and TG convection with a negative Marangoni number. The results are shown 
for the moments of time 2-i0 -s, 4"10 -5 , and 12.10 -5 , respectively. The streamlines show that 
a complex flow structure develops inside the layer in this case as a result of the interac- 
tion of several toroidal vortices of different intensities. The velocity profile near the 
axis also has a complex structure, with two local maxima and minima. Over time, motion stabi- 
lizes with the formation of a slightly-varying profile having approximately the same local 
minima. It is evident that in the case of the combined action of TC and TG convection near 
the surface, motion generated by TC forces remains predominant in terms of velocity. 

In all of the variants examined above, motion of the liquid is localized in a small 
region adjacent to the hot spot. It can be seen from the corresponding streamlines that 
this is related to the fact that vortical motion develops opposite the direction of initial 
motion after a certain amount of time has elapsed (the stream function takes negative values 
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Fig. 4. Distribution of temperature on the axis @ 
(r = 0, z, t) through the depth of the layer; curves 
i, 2, 3, and 4 correspond to the moments of time 
2.10 -s, 4.10 -s, 6-10 -5 , 12"i0 -5, respectively. 

< 0 and the direction of circulation of the liquid is counterclockwise). The development 
of this vortical motion prevents further movement of the liquid from the axis to the peri- 
phery. 

Figure 2 shows the change in the rate of vortical motion over time for the above three 
cases. It should be noted that the value of ~max characterizes the rate of circulatory 
motion of the liquid inside the layer in the clockwise direction, while ~min denotes the 
same in the counterclockwise direction. A change in the sign of do/dT in the absence of TG 
convection changes the direction of circulation in the toroidal vortex. With a positive 
Marangoni number (do/dT < 0), motion occurs from the center - curve 1 for ~max (~min is not 
represented because it is close to zero). With a negative Marangoni number (do/dT > 0), 
liquid on the surface moves toward the axis of the cuvette and descends along the cylindri- 
cal hot spot. An abrupt and forced change in the direction of the particles near the surface 
leads to stagnation of the liquid. Thus, at Ma < 0, the velocity inside the layer (charac- 
terized by ~min - curve 2) is considerably lower than with a positive Marangoni number. 

In the case when TC and TG counteract one another, Ma < 0, Gr = i0 v, a complex flow 
structure consisting of several interacting vortices of different intensities develops 
inside the layer (the isolines are shown in Fig. ic-e). The relations ~max(t) and ~min(t) 
(curves 3 and 3' in Fig. 2) are oscillatory in character. Meanwhile, the maximum velocity 
in one of the toroidal vortices is reached when the velocity is minimal in another vortex. 

The temperature distribution on the surface of the layer has a large effect on the char- 
acter of motion near the surface. Figure 3 shows the temperature profiles for the cases a, 
b, and c. Shown below are the isotherms for the same moments of time. It follows from 
analysis of the isotherms that in the case of a positive Marangoni number do/dT < 0, Gr = 0 
(Fig. 3a), heat is removed from the surface by convection and a second local heat source is 
formed near the surface. This situation leads to the development of reverse flows. Along 
with the initial temperature maximum located in the center, the surface-temperature profile 
shows a local temperature maximum located the same distance from the axis as the heat source 
formed inside the layer. 

In the case do/dT > 0, Gr = 0 (Fig. 3b), thermocapillary forces cause heat to be 
removed from the surface to the interior of the liquid near the axis. In this case, the 
temperature on the surface quickly decreases to zero. The radius of motion of the liquid is 
considerably smaller than in the previous case. 

When we also consider the force of gravity Gr = 10 7 together with the anomalous temper- 
ature dependence do/dT > 0, heat is moved by convection inside the layer a relative short 
distance from the surface over the radius (Fig. 3c) as a result of gravitation. Surface 
thermocapillary forces impede this transfer, and the temperature of the surface becomes less 
than the temperature inside the liquid a short distance from the surface. 
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Figure 4 shows the temperature distribution on the axis of the vessel @ (r = 0, z, t) 
through the depth of the layer for cases a, b, and c. An identical temperature @ = 1 is 
assigned on the axis at the initial moment of time. The subsequent change in temperature 
on the axis over time shows the process of heat removal from the heated zone. 

In the case of normal TC convection Ma > 0 (Fig. 4a), heat is removed from the hot 
region along the surface. Here, heat moves from the center to the periphery. Heat is 
removed more rapidly from the upper layers, so that the temperature on the axis increases 
smoothly toward the bottom. 

In the case of anomalous TC convection do/dT > 0, Ma < 0 (Fig. 4b), heat is moved by 
thermocapillary forces into the interior of the liquid near the axis, and the maximum tem- 
perature is seen a certain distance from the surface z = h I < h. Temperature decreases 
slightly approaching the bottom. 

In the case of TC convection do/dT > 0 and the presence of gravitation (Fig. 4c), 
gravitational and thermocapillary forces compete with one another. The maximum temperature 
on the axis occurs a certain distance from the surface (z = h 2 < h) but closer to it than in 
the previous case h 2 > h~. In contrast to the cases a and b examined above, temperature 
decreases sharply toward the bottom under the influence of gravity. 

It follows from the above description of the character of TC and TG motion that when 
Ma < 0 and Gr # 0, the change in the maximum rate of vortical motion is oscillatory in char- 
acter. The temperature distribution along the axis has a distinct maximum inside the layer. 

NOTATION 

r, radial coordinate; z, axial coordinate; t, time; v, vertical velocity; u, radial 
velocity; ~, curl; ~, stream function; a, radius of heated region; T, dimensional tempera- 
ture; @ , dimensionless temperature; H, thickness of layer; h, dimensionless thickness of 
layer; R, radius of cuvette; To, initial temperature of medium; TI, temperature of heated 
region; v, • B, kinematic viscosity, diffusivity, and coefficient of thermal expansion, 

da R(T1--To) 
respectively; o = o(T), surface tension; Pr=v/• , Prandtl number; Ma=-- gT • ' 

Marangoni number; Gr=g~R~(TI--To)/V 2 , Grashof number; Ra = GrPr, Rayleigh number; g, 
acceleration due to gravity. Indices: s pertains to values of the variables on the surface 
of the layer; ' pertains to the corresponding dimensional variables. 
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